Evaluation of the Chemical Quality of Based Rations Guinea Grass (Panicum maximum) through Combination of Different Swamp Forages

Authors

  • Riswandi Riswandi Animal Science Department, Agriculture Faculty, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Muhakka Muhakka Animal Science Department, Agriculture Faculty, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Agus Wijaya Agricultural Product Technology Study Program, Faculty of Agriculture, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Afnur Imsya Animal Science Department, Agriculture Faculty, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Desi Kurnia Animal Science Department, Agriculture Faculty, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Cempaka Kirana Animal Science Department, Agriculture Faculty, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia

DOI:

https://doi.org/10.36706/jlso.11.2.2022.567

Keywords:

chemical quality, guinea grass, swamp forage

Abstract

Swamp forage has the potential as an alternative feed for ruminants. This study aimed  to evaluate the chemical quality of Guinea grass (Panicum maximum) based rations through a combination of different types of swamp forage. This research was conducted for 3 months at the Animal Feed Nutrition Laboratory, Faculty of Agriculture, Sriwijaya University. The design used in this study was a completely randomized design (CRD) consisting of 4 treatments and 4 replications. The treatments consisted of R0 (70% Guinea grass + 30% Concentrate), R1 (40% Guinea grass + 30% water mimosa + 30% Concentrate), R2 (40% Guinea grass + 30% giant molesta + 30% Concentrate), R3 (40% Guinea grass + 30% water chestnut + 30% Concentrate). The variables observed were dry matter (DM), organic matter (OM), crude protein (CP), crude fiber (CF), extract ether (EE), tannin and saponins. The results showed that the treatment had a significant effect (P < 0.05) on the content of DM, OM, CP, CF, Tannins and Saponins, while the extract ether content had no significant effect (P > 0.05). Furthermore, highest DM (82.45%), OM (76.96%) and CP (16.35% were obtained in R1, CF (22.34%) in R0. Tannin best concentration (1.09%) in R3 and saponins (2.16%) in R1. The conclusion of this study showed that the combination of 40% Guinea grass + 30% water mimosa + 30% concentrate could improve the chemical quality of the ration.

References

AOAC. 2010. Official Methods of Analysis of AOAC International. 18 th edn. Revision 3. Association of Official Analytical Chemist, Washington DC.

Albores-Moreno S, Alayón-Gamboa JA, Ayala-Burgos AJ, Solorio-Sánchez, Aguilar-Pérez CF, Olivera-Castillo L, Ku-Vera JC. 2017. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Trop. Anim. Health Prod. 49: 857–866. DOI: 10.1007/s11250-017-1275-y.

Ali AIM, Sandi S, Muhakka, Riswandi, Budianta D. 2013. The Grazing of Pampangan Buffaloes at Non Tidal Swamp in South Sumatra of Indonesia. APCBEE Procedia ICAAA 2013: July 27−28, Moscow, Russia.

Brogna DMR, Tansawat R, Cornforth D, Ward R, Bella M, Luciano G. 2013. The quality of meat from sheep treated with tannin- and saponin-based remedies as a natural strategy for parasite control. Meat Sci. 96 (2 PtA): 744−9. DOI: 10.1016/j.meatsci.2013.10.019.

Cieslak A, Zmora P, Stochmal A, Pecio L, Oleszek W, Pers-Kamczyc E, Szczechowiak J, Nowak A, Szumacher-Strabel M. 2014. Rumen antimethanogenic effect of Saponaria officinalis L. phytochemicals in vitro. J. Agric. Sci. 152 (6): 981–993. DOI: 10.1017/S0021859614000239.

Das TK, Banerjee D, Chakraborty D, Pakhira MC, Shrivastava B, Kuhad RC. 2012. Saponin: role in the animal system. Vet World. 5 (4): 248−54. DOI: 10.5455/vetworld.2012.248-254.

Haryanto B. 2012. The development of ruminant nutrition research. Wartazoa. 22 (4): 169–177.

Huyghebaert G, Ducatelle R, Van Immerseel F. 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet J. 187 (2): 182−188. DOI: 10.1016/j.tvjl.2010.03.003.

Jayanegara A. 2012. Animal Feed Materials. Laboratory of Animal Feed Technology. Animal Husbandry IPB (Bogor Agriculture Institute). Bogor.

Jayanegara A, Goel G, Makkar HPS, Becker K. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209: 60–68. DOI: 10.1016/j.anifeedsci.2015.08.002.

Periyanayagam K, Gopalkrishnan S, Karthikeyan V. 2014. Comparative pharmacognostical evaluation of nine different varieties of the leaves of Psidium guajava Linn. The Journal of Phytopharmacology. 3 (4): 264−274. DOI: 10.31254/phyto.2014.3408.

Karaskova K, P Suchy, E Strakova. 2015. Current use of phytogenic feed additives in animal nutrition: a review. Czech J Anim Sci. 60 (12): 521−530. DOI:10.17221/8594-CJAS.

Lazzarini I, Detmann E, Sebastião de Campos VF, Paulino MF, Erick DB, Luana M, de Almeida R, William LS dos R, Marcia de OF. 2016. Nutritional performance of cattle grazing during the rainy season with nitrogen and starch supplementation. Asian Australas. J. Anim. Sci. 29 (8): 120−1128. DOI: 10.5713/ajas.15.0514.

Liu Y, Ma T, Chen D, Zhang N, Si B, Deng K, Tu Y, Diao Q. 2019. Effects of tea saponin supplementation on nutrient digestibility, methanogenesis, and ruminal microbial flora in Dorper crossbred ewe. Animals. 9 (29): 1−11. DOI: 10.3390/ani9010029.

David LH. 2020. Grand challenge in animal nutrition. Front. Anim. Sci. 1 (621638): 1−3. DOI: 10.3389/fanim.2020.621638.

Muhakka, Suwigyo RA, Budianta D, Yakup. 2020. Nutritional values of swamp grasses as feed for Pampangan Buffaloes in South Sumatra, Indonesia. Biodiversitas. 21 (3): 953-961. DOI: 10.13057/biodiv/d210314.

NRC (Nutrient Requirements of Beef Cattle). 2016. National Academies of Sciences, Engineering, and Medicine, eighth revised edition. The National Academies Press, Washington, DC. DOI: 10.17226/19014.

Patra AK, Stiverson J, Yu Z. 2012. Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. J Appl Microbiol. 113 (6): 1329−40. DOI: 10.1111/j.1365-2672.2012.05440.x.

Rao I, Peters M, Castro A, Schultze-Kraft R, Rudel T. 2015. Livestock Plus–the sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Trop. Grassl. - Forrajes Trop. 3: 59–82.

Riswandi, Priyanto L, Imsya A, Nopiyanti M. 2017. In vitro digestibility of fermented hymenacne acutigluma-based rations supplemented with different legumes. Journal Veteriner. 18 (2): 303−311. DOI: 10.19087/jveteriner.2017.18.2.303.

Rostini T, Abdullah L, Wiryawan LKG, &. Karti PDMH. 2014. Utilization of Swamp Forages from South Kalimantan on Local Goat Performances. J. Media Peternakan. 37 (1): 50−56. DOI: 10.5398/medpet.2014.37.1.50.

Wanapat M, Kang S, Polyorach S. 2013. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J Anim Sci Biotechnol. 4 (32): 1−11.

Downloads

Published

2022-10-01

How to Cite

Riswandi, R., Muhakka, M., Wijaya, A., Imsya, A., Kurnia, D., & Kirana, C. (2022). Evaluation of the Chemical Quality of Based Rations Guinea Grass (Panicum maximum) through Combination of Different Swamp Forages. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands, 11(2), 161–168. https://doi.org/10.36706/jlso.11.2.2022.567

Issue

Section

Articles