Repellent Potency of N-Hexane Extract Leaf and Stem Ocimum basilicum against Culex quinquefasciatus
DOI:
https://doi.org/10.36706/jlso.11.1.2022.514Keywords:
essential oil, filariasis, mosquitoes, repellentAbstract
The Culex quinquefasciatus mosquito is the main vector of filariasis, various ways to control vector breeding is the use of insecticide from natural ingredients, one of which is basil containing essential oils and proven is effective as a repellent against the mosquito. The objective of this research was to determine the repellent potency of n-hexane extract of basil leaves and stems against the Culex quinquefasciatus. This study was a laboratory experimental study using a completely randomized design, with 3 replications at 7 times intervals. The extract concentrations were 15%, 25%, 35 % and ethanol negative control 96%, the positive control repellent X containing 13% DEET. The results showed that the n-hexane extracts of basil leaves and stems for 6 hours at all concentrations were able to repel mosquitoes up to 92.51%, the one-way ANOVA analysis showed that the value of p= 0.000 (< 0.05), meaning that there was a difference in the number of C. quinquefasciatus perching on the black cloth at various concentrations of n-hexane extracts of leaves and stems of basil, while the probit analysis showed that the effective extract concentration at 90% was 31.52%. The extract of n-hexane leaves and basil stems was effective as a repellent against the C. quinquefasciatus.
References
Ahmed M, Peiwen Q, Gu Z, Liu Y, Sikandar A, Hussain D, Javeed A, Shafi J, Iqbal MF, An R, Guo H, Du Y, Wang W, Zhang Y, Ji M. 2020. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci. Rep. 10: 1–10. DOI: 10.1038/s41598-019-57092-5.
Amoabeng BW, Johnson AC, Gurr GM. 2019. Natural enemy enhancement and botanical insecticide source: a review of dual-use companion plants. Appl. Entomol. Zool. 54: 1–19. DOI: 10.1007/s13355-018-00602-0.
Asbahani A El, Miladi K, Badri W, Sala M, Addi EHA, Casabianca H, Mousadik A El, Hartmann D, Jilale A, Renaud FNR, Elaissari A. 2015. Essential oils: From extraction to encapsulation. Int. J. Pharm. 483: 220–243. DOI: 10.1016/j.ijpharm.2014.12.069.
Bohbot JD, Jones PL, Wang G, Pitts RJ, Pask GM, Zwiebel LJ. 2011. Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. Chem. Senses. 36: 149–160. DOI: 10.1093%2 Fchemse%2Fbjq105.
Brito NF, Moreira MF, Melo ACA. 2016. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 95: 51–65. DOI: 10.1016/ j.jinsphys.2016.09.008.
Campos EVR, Proença PLF, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF. 2019. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 105: 483–495. DOI: 10.1016/j.ecolind.2018.04.038.
Chaudhary A, Sharma S, Mittal A, Gupta S., Dua A. 2020. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol. 57: 3852–3863.
Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB. 2018. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ. Int. 113: 214–230. DOI: 10.1016/j.envint.2017.12.038.
Deletre E, Martin T, Duménil C, Chandre F. 2019. Insecticide resistance modifies mosquito response to DEET and natural repellents. Parasit. Vectors. 12: 89. DOI: 10.1186/s13071-019-3343-9.
Deletre E, Schatz B, Bourguet D, Chandre F, Williams L, Ratnadass A, Martin T. 2016. Prospects for repellent in pest control: current developments and future challenges. Chemoecology. 26: 127–142. DOI: 10.1007/s00049-016-0214-0.
Demiray H, Tabanca N, Estep AS, Becnel JJ, Demirci B. 2019. Chemical composition of the essential oil and n-hexane extract of Stachys tmolea subsp. Tmolea Boiss., an endemic species of Turkey, and their mosquitocidal activity against dengue vector Aesdes aegypti. Saudi Pharm. J. 27: 877–881. DOI: 10.1016/j.jsps.2019.05.009.
Diop A, Diop YM, Thiaré DD, Cazier F, Sarr SO, Kasprowiak A, Landy D, Delattre F. 2016. Monitoring survey of the use patterns and pesticide residues on vegetables in the Niayes zone, Senegal. Chemosphere. 144: 1715–1721.
Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP. 2019. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African J. Bot. 120: 261–267. DOI: 10.1016/j.sajb.2018.07.003.
Farzaei MH, Bahramsoltani R, Ghobadi A, Farzaei F, Najafi F. 2017. Pharmacological activity of Mentha longifolia and its phytoconstituents. J. Tradit. Chinese Med. 37: 710–720.
IAEA. 2017. Guidelines for standardised mass rearing of anopheles mosquitoes. food and agriculture organization of the united nations international atomic energy agency vienna. Vienna, p. 44.
Iskandar BS, Iskandar J, Partasasmita R, Irawan B. 2020. Various medicinal plants traded in the village market of Karangwangi village, southern Cianjur, west java, Indonesia. Biodiversitas. 21: 4440–4456. DOI: 10.13057/ biodiv/d210963Various.
Isman MB. 2017. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crops Prod. 110: 10–14. DOI: 10.1016/j.indcrop. 2017.07.012.
Lee J, Ryu JS. 2019. Current status of parasite infections in Indonesia: A literature review. Korean J. Parasitol. 57: 329–339. DOI: 10.3347/ kjp.2019.57.4.329.
Legeay S, Clere N, Apaire-Marchais V, Faure S, Lapied B. 2018. Unusual modes of action of the repellent DEET in insects highlight some human side effects. Eur. J. Pharmacol. 825: 92–98. DOI: 10.1016/j.ejphar.2018.02.033.
Lombardo F, Salvemini M, Fiorillo C, Nolan T, Zwiebel LJ, Ribeiro JM, Arcà B. 2017. Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus. BMC Genomics. 18: 1–23. DOI: 10.1186/s12864-017-4144-1.
Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules. 19: 16240–16265. DOI: 10.3390/molecules191016240.
Montell C, Zwiebel LJ. 2016. Mosquito sensory systems, in: Raikhel, A.S. (Ed.), progress in mosquito research, advances in insect physiology. Science direct. 293–328. DOI: 10.1016/bs.aiip.2016.04.007.
Nchoutpouen E, Talipouo A, Djiappi-Tchamen B, Djamouko-Djonkam L, Kopya E, Ngadjeu CS, Doumbe-Belisse P, Awono-Ambene P, Kekeunou S, Wondji CS, Antonio-Nkondjio C. 2019. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13: 1–16. DOI: 10.1371/journal.pntd.0007229.
Ntalli N, Koliopoulos G, Giatropoulos A, Menkissoglu-Spiroudi U. 2019. Plant secondary metabolites against arthropods of medical importance. Phytochem Rev. 18: 1255–1275. DOI: 10.1007/s11101-019-09647-7.
Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin ES, Selin-Rani S, Kalaivani K, Hunter WB, Alessandro RT, Abdel-Megeed A, Paik CH, Duraipandiyan V, Al-Dhabi NA. 2016. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol. Environ. Saf. 133: 260–270. DOI: 10.1016/ j.ecoenv.2016.06.043 0147-6513/&.
Samy AM, Elaagip AH, Kenawy MA, Ayres CFJ, Peterson AT, Soliman DE. 2016. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS One. 11. DOI: 10.1371/journal.pone.0163863.
Sankhalkar S, Vernekar V. 2016. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera lam and Ocimum tenuiflorum L. Pharmacognosy Res. 8: 16–21. DOI: 10.4103/0974-8490.171095.
Silverio MRS, Espindola LS, Lopes NP, Vieira PC. 2020. Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules. 25. DOI: 10.3390/ molecules25153484.
Swale DR, Sun B, Tong F, Bloomquist JR. 2014. Neurotoxicity and mode of action of N, N-Diethyl-Meta-Toluamide (DEET). PLoS One. 9: 1–11. DOI: 10.1371/journal.pone.0103713.
Tian H, Fürstenberg A, Huber T. 2017. Labelling and single-molecule methods to monitor G protein-coupled receptor dynamics. Chem. Rev. 117: 186–245. DOI: 10.1021/acs.chemrev.6b00084.
Tzotzos G, Iley JN, Moore EA. 2018. New insights on repellent recognition by Anopheles gambiae odorant-binding protein 1. PLoS One. 13: 1–23. DOI: 10.1371/journal.pone.0194724.
Vinauger C, Lahondère C, Wolff GH, Locke LT, Liaw JE, Parrish JZ, Akbari OS, Dickinson MH, Riffell JA. 2018. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28: 333-344.e8. DOI: 10.1016%2Fj. cub.2017.12.015.
WHO. 2009. Guidelines for efficacy testing of mosquito repellents for human skin. Control of Neglected Tropical Diseases WHO Pesticide Evaluation Scheme.
Yee DA, Skiff JF. 2014. interspecific competition of a new invasive mosquito, Culex coronator, and two container mosquitoes, Aedes albopictus and Cx. quinquefasciatus (Diptera: Culicidae), across different detritus environments. In. J. Med. Entomol. 51: 89–96. DOI: 10.1603/me13182.
Zahran EM, Abdelmohsen UR, Khalil HE, Desoukey SY, Fouad MA, Kamel MS. 2020. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev. 19: 907–953.
Zaniol F, Calisto JFF, Cozzer G, Ferro DM, Dias JL, Rodrigues LGG, Mazzutti S, Rezende RS, Simões DA, Ferreira SRS, Dal Magro J, Oliveira JV. 2020. Comparative larvicidal effect of Pterodon spp. extracts obtained by different extraction methods. J. Supercrit. Fluids. 166. DOI: 10.1016/ j.supflu.2020.104993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Indri Ramayanti, Miranti Dwi Hartanti, Reynaldi Aulia Rahman
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.