Antibacterial activity of ginger essential oil derived nanobactericide against the growth of phytopathogenic bacteria - A Review

Authors

  • Mahesh Tiran Gunasena Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Khairulmazmi Bin Ahmad Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Mohd Zobir B Hussein Analytical Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Asgar Ali Centre of Excellence for Postharvest Biotechnology, Faculty of Science, The University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
  • Mohd Zobir Syazwan Afif Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Mohd Aswad bin Abdul Wahab Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.36706/jlso.14.1.2025.750

Keywords:

antibacterial activity, essential oil, ginger, nanobactericide, nanogel, Phytopathogenic bacteria

Abstract

Phytopathogenic bacteria infect various plants, causing economic losses, negative environmental consequences, and harming agricultural development. The most currently available antimicrobial agents for agriculture were potentially toxic, non-biodegradable, and cause significant harm to the ecosystem. As a result, novel, effective, safe, user-friendly, and alternative methods were urgently needed. Essential oils (EOs) have great potential in managing plant bacterial diseases because they successfully destroy various pathogenic bacteria. Ginger essential oil (GEO) is more widely used because it contains a diverse mixture of volatile substances, such as phenolic compounds, terpenes, polysaccharides, lipids, and organic acids. The antibacterial activity of the EO against phytopathogenic bacteria is significantly improved when it is converted into nanoparticles. Nanoparticles (NPs) that were derived from EOs have a considerable antibacterial action resulting from increased chemical solubility and consistency, minimal rapid evaporation, and slow depletion of the effective substances of EO. Ginger EOs were encapsulated in chitosan as a nanogel to improve the antibacterial effects and the consistency of the oils against pathogenic bacteria. Nanogel had been shown to amplify the antibacterial effect of EOs against pathogenic bacteria by enhancing their potential to disturb the integrity and permeability of the cell membranes. This paper focuses on three major parts of ginger essential oils: the antibacterial efficacy to control plant pathogenic bacteria, the possible mechanisms of action of essential oils as nanobactericides, and more importantly, the fabrication of bactericide nanoformulation.

References

Abdullahi, A., Khairulmazmi, A., Yasmeen, S., Ismail, I. S., & Norhayu, A. (2020). Phytochemical profiling and antimicrobial activity of ginger (Zingiber Officinale) essential oils against important phytopathogens. Arabian Journal of Chemistry, 13(11), 8012–25. https://doi.org/10.1016/j.arabjc.2020.09.031

Abozahra, R., Abdelhamid, S. M., Wen, M. M., Abdelwahab, I., & Baraka, K. (2020). A Nanoparticles based microbiological study on the effect of rosemary and ginger essential oils against Klebsiella pneumonia. The Open Microbiology Journal, 14, 205-212. https://doi.org/10.2174/1874285802014010205

Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A., & Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: physicochemical Characterization and antimicrobial properties. Food Hydrocoll, 47, 168–177. https://doi.org/10.1016/j.foodhyd.2015.01.032

Aghazadeh, M., Bialvaei, A .Z., Aghazadeh, M., Kabiri, F., Saliani, N., Yousef, M., Eslami, H., & Kafl, H. S. (2016). Survey of the antibiofilm and antimicrobial effects of Zingiber officinale (in Vitro Study). Jundishapur J. Microbiol, 9(2), e30167. https://doi.org/10.5812/jjm.30167

Alsherbiny, M. A., Abd-Elsalam, W. H., El Badawy, S. A., Taher, E., Fares, M., Torres, A., Chang, D., & Li, C. G. (2019). Ameliorative and protective effects of ginger and its main constituents against natural, chemical, and radiation-induced toxicities: A comprehensive review. Food Chem. Toxicol., 123, 72–97. https://doi.org/10.1016/j.fct.2018.10.048

Amiri, A., & Morakabati, N. (2017). Encapsulation of Satureja khuzestanica essential oil in chitosan nanoparticles with enhanced antifungal activity. International Scholarly and Scientific Research & Innovation, 11 (4), 331-336. https://doi.org/10.1080/10826068.2021.1881907

Amiri, H., Mohammadi, M., Sadatmand, S., & Taheri, E. (2016). Study the chemical composition of essential oil of ginger (Zingiber officinale) and Antioxidant and Cell Toxicity. J. Med. Plants, 15 (58), 89-98

Ashraf, A., Sultan, S., & Ali Shah, S.A. (2017). Phychemistry, phytochemical, pharmacological and molecular study of zingiber officinale roscoe: A Review. International Journal of Pharmacy and Pharmaceutical Sciences, 9(11), 8-16. http://dx.doi.org/10.22159/ijpps.2017v9i11.19613

Ayrapetyan, M., Williams, T. C., & Oliver, J. D. (2015). Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol, 23, 7–13. https://doi.org/10.1016/j.tim.2014.09.004

Azhari, H. N., Sook S. Y., & Abdurahman H. N. (2017). Extraction and chemical compositions of ginger (Zingiber officinale Roscoe) essential oils as cockroaches repellent. Australian Journal of Basic and Applied Sciences, 11(3), 1–8.

Azmir, J., Zaidul, I., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N., & Omar, A. (2013). Techniques for extraction of bioactive compounds from plant materials: a review, J. Food Eng., 117, 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

Badawy, M. E. I., & Abdelgaleil, S. A. M., (2014). Composition and antimicrobial activity of essential oils isolated from egyptian plants against plant pathogenic bacteria and fungi. Industrial Crops and Products, 52, 776–782. https://doi.org/10.1016/j.indcrop.2013.12.003

Bajpai, V. K., Baek, K. H., & Sun, C. K. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722-734. https://doi.org/10.1016/j.foodres.2011.04.052

Bajpai, V. K., Sharma, A., & Baek, K. H. (2013). Antibacterial mode of action of Cudrania tricuspidate fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, 32(2), 582-590. https://doi.org/10.1016/j.foodcont.2013.01.032

Baker, S., & Perianova, O. V. (2019). Bio‑nanobactericides: an emanating class of nanoparticles towards combating multi‑drug resistant pathogens. SN Applied Sciences, 1, 699 https://doi.org/10.1007/s42452-019-0715-x

Balderrama-González, A.-S., Piñón-Castillo, H.-A., Ramírez-Valdespino, C.-A., Landeros-Martínez, L.-L., Orrantia-Borunda, E., Esparza-Ponce, H.-E. (2021). Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci., 2021, 22, 12890. https://doi.org/10.3390/ijms222312890

Balouiri, M., Sadiki, M., & Ibnsouda, S. A. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Biomed. Anal, 6 (2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Beristain-Bauza, S. D. C., Hernandez-Carranza, P., Cid-Perez, T. S., Avila-Sosa, R.,Ruiz-Lopez, I. I., & Ochoa-Velasco, C. E. (2019). Antimicrobial activity of ginger (Zingiber offcinale) and its application in food products. Food Rev. Int., 41, 1–20. https://doi.org/10.1080/87559129.2019.1573829

Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., & Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 54, 310–319. https://doi.org/10.1016/j.indcrop.2014.01.033

Bhat, G., Rasool, S., Shakeel-u-Rehman, Ganaie, M., Qazi, P. H., & Shawl, A. S. (2016). Seasonal variation in chemical composition, antibacterial and antioxidant activities of the essential oil of leaves of Salvia officinalis (Sage) from Kashmir, India. J. Essent. Oil Bear. Plants, 19, 1129–1140. https://doi.org/10.1080/0972060X.2016.1211491

Borges, D. F., Lopes, E. A., Fialho Moraes, A. R., Soares, M. S., Visôtto, L. E., Oliveira, C. R., & Moreira Valente, V. M. (2018). Formulation of botanicals for the control of plant-pathogens: A review. Crop. Prot., 110, 135–140. https://doi.org/10.1016/j.cropro.2018.04.003

Campos, E. V. R., de Oliveira, J. L., & Fraceto, L. F. (2014). Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: A review. Adv. Sci. Eng. Med., 6, 373–387. https://doi.org/10.1166/asem.2014.1538

Canillac, N., & Mourey, A. (2001). Antibacterial activity of the essential oil of Picea excelsa on Listeria, Staphylococcus aureus, and coliform bacteria. Food Microbiol, 18(3), 261-268. https://doi.org/10.1006/fmic.2000.0397

Chacko, R.T., Ventura, J., Zhuang, J., & Thayumanavan, S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev., 64, 836–51. https://doi.org/10.1016/j.addr.2012.02.002

Choi, J. G., Kim, S. Y., Jeong, M., & Oh, M. S. (2018). The pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacology and Therapeutics, 182, 56–69. https://doi.org/10.1016/j.pharmthera.2017.08.010

Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. https://doi.org/10.3390/medicines4030058

Cui, H., Bai, M., Rashed, M. M. A., & Lin, L. (2018). The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157: H7 biofilms on cucumber. Int. J. Food Microbiol., 266, 69–78. https://doi.org/10.1016/j.ijfoodmicro.2017.11.019

De Barros, F. R. V., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H.J.B., do Carmo, E. L., & Botrel, D. A. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind. Crop Prod., 94, 413–423. https://doi.org/10.1016/j.indcrop.2016.09.010

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: a critical Review. Medicines, 3(25), 1-16. https://doi.org/10.3390/medicines3040025

Donsì, F., Annunziata, M., Sessa, M., & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Science and Technology, 44 (9), 1908‒1914. https://doi.org/10.1016/j.lwt.2011.03.003

dos Santos, N. S. T., Aguiar, A. J. A. A., de Oliveira, C. E. V., de Sales, C. V., e Silva, S. D. M., da Silva, R. S., & de Souza, E. L. (2012). Efficacy of the application of a coatingcomposed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiology, 32(2), 345‒353. https://doi.org/10.1016/j.fm.2012.07.014

Farag, R. K., & Riham R. M. (2013). Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules, 18(1), 190-203. https://doi.org/10.3390/molecules18010190

Feng, J., Du, Z., Zhang, L., Luo, W., Zheng, Y., Chen, D., Pan, W., Yang, Z., Lin, L., & Xi, L. (2018). Chemical composition and skin protective effects of essential oil obtained from ginger (Zingiber officinale Roscoe). Journal of Essential Oil-Bearing Plants, 21(6), 1542–1549. https://doi.org/10.1080/0972060X.2018.1533436

Ferreira, F. M. D., Hirooka, E. Y., Ferreira, F. D., Silva, M. V., Mossini, S. A. G., & Jr. M. M. (2018). Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro. Food Additives & Contaminants: Part A., 35(11), 2168-2174. https://doi.org/10.1080/19440049.2018.1520397

Gakuubi, M. M., Wagacha, J. M., Dossaji, S. F., & Wanzala. W. (2016). Chemical composition and antibacterial activity of essential oils of tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. International Journal of Microbiology, 2016(1), 7352509. https://doi.org/10.1155/2016/7352509

Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv., 29(6), 792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

Grace, U. S., Sankari., M., & Gopi. (2017). Antimicrobial activity of ethanolic extract of Zingiber Officinale – an in vitro study. Journal of Pharmaceutical Sciences, 9(9), 1417–1419.

Gasic, S., & Tanovic, B. (2013). Biopesticide formulations, the possibility of application, and future trends. Pestic. Phytomed, 28, 97–102. https://doi.org/10.2298/PIF1302097G

Gomes, C., Moreira, R. G., & Castell-Perez, E. (2011). Poly (DLlactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. Food J. Food Sci., 76(2), N16-N24. https://doi.org/10.1111/j.1750-3841.2010.01985.x

Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. J. Nanosci. Nanotechnol, 16(1), 1231–1234. https://doi.org/10.1166/jnn.2016.12332

Ha, S.K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S., & Kim, S. Y. (2012). 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology, 63 (2), 211–23. https://doi.org/10.1016/j.neuropharm.2012.03.016

Hancock, R.D., Hogenhout, S., & Foyer, C.H. (2015). Mechanisms of plant-insect interaction. Journal of Experimental Botany, 66(2), 421-424. https://doi.org/10.1093/jxb/eru503

Hasan, S., Danishuddin, M., & Khan, A.U. (2015). Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiology, 15(1), 1-14. https://doi.org/10.1186/s12866-014-0320-5

Hasheminejad, N., Khodaiyan, F., & Safari, M. (2018). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry. 275,113–22. https://doi.org/10.1016/j.foodchem.2018.09.085

Hickey, J. W., Santos, J. L., Williford, M., & Mao, Q. (2015). Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 219, 536. https://doi.org/10.1016/j.jconrel.2015.10.006

Hossain, S., De Silva B. C. J., Wimalasena, S. H. M. P., Pathirana, H. N. K. S., & Heo, G. J. (2019). In vitro antibacterial effect of ginger (Zingiber officinale) essential oil against fish pathogenic bacteria isolated from farmed olive flounder (Paralichthys olivaceus) in Korea. Iranian Journal of Fisheries Sciences, 18(2), 386–394. https://doi.org/10.22092/ijfs.2018.119853

Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization, and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. https://doi.org/10.1016/j.carbpol.2013.02.031

Jeevanandam, J., Barhoum, A., Yen S. Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity, and regulations. Beilstein J. Nanotechnol, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98

Ju, J., Xie, Y. F., Guo, Y. H., Cheng, Y. L., Qian, H., & Yao, W. R. (2018). Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 59(15), 2467–2480. https://doi.org/10.1080/10408398.2018.1456402

Kah, M., Tufenkji, N. & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol, 14(6), 532–540 https://doi.org/10.1038/s41565-019-0439-5

Kannan, V., Bastas, K., & Devi, R. (2016). Sustainable approaches to controlling plant pathogenic bacteria. Boca Raton, FL: CRC Press.

Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan Nanoparticle-Based Delivery Systems for Sustainable Agriculture. International Journal of Biological Macromolecules, 77, 36–51. https://doi.org/10.1016/j.ijbiomac.2015.02.039

Katiyar, D., Hemantaranjan, A., Singh, B., & Bhanu, A. N. (2014). A future perspective in crop protection: chitosan and its oligosaccharides. Advances in Plants & Agriculture Research, 1 (1), 23‒30. https://doi.org/10.15406/apar.2014.01.00006

Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization, and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B., 84(1), 163–171. https://doi.org/10.1016/j.colsurfb.2010.12.031

Kerekes, E. B., Vidács, A., Jenei, J. T., Gömöri, C., Takó, M., & Chandrasekaran, M. (2015). Essential oils against bacterial biofilm formation and quorum sensing of food-borne pathogens and spoilage microorganisms. 429–437. Formatex Research Center

Kieliszek, M., Edris, A., Kot, A.M., & Piwowarek, K. (2020). biological activity of some aromatic plants and their metabolites, with an emphasis on health-promoting properties. Molecules, 25(11), 2478. https://doi.org/10.3390/molecules25112478

Kim, J.-S., Chowdhury, N., Yamasaki, R., & Wood, T. K. (2018). Viable but non-culturable and persistence describes the same bacterial stress state. Environ. Microbiol, 20(6), 2038-2048. doi: 10.1111/1462-2920.14075

Kim, H., & Park, H. (2013). Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS ONE, 8(9). e76106. doi: 10.1371/journal.pone.0076106

Koch, W., Marzec, Z., Kasperek, E., Szwerc, W., & Asakawa, Y. (2017). Application of chromatographic and spectroscopic methods towards the quality assessment of ginger (Zingiber officinale) Rhizomes from Ecological Plantations. International Journal of Molecular Sciences, 18(2), 452. https://doi.org/10.3390/ijms18020452

Kocic-Tanackov, S. D., & Dimic, G. R. (2013). Antifungal activity of essential oils in the control of food-borne fungi growth and mycotoxin biosynthesis in food. microbial pathogens and strategies for combating them: science, technology and education. 838–849. A. Méndez-Vilas, Ed.

Kokoskova, B., Pouvova, D., & Pavela, R. (2011). Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants, Journal of Plant Pathology, 93(1), 133–139. https://doi.org/10.4454/jpp.v93i1.283

Kotan, R., & Dadaso, F. (2013). Antibacterial activity of the essential oil and extracts of Satureja hortensis against plant pathogenic bacteria and their potential use as seed disinfectants. Scientia Horticulturae, 153, 34–41. https://doi.org/10.1016/j.scienta.2013.01.027

Lakehal, S., Meliani, A., Benmimoune, S., Bensouna, S. N., Benrebiha, F.Z., & Chaouia, C. (2016). Essential oil composition and antimicrobial activity of Artemisia herba–alba Asso has grown in Algeria. Med. Chem., 6(6), 435–439. https://doi.org/10.4172/2161-0444.1000382

Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M., & Carriere, M.. (2012). Accumulation, translocation, and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of The Total Environment, 431, 197-208. https://doi.org/10.1016/j.scitotenv.2012.04.073

Li, H., Liue, Y., Luoa, D., Ma, Y., Zhang, J., Li, M.,Yao, L., Shi, X., Liua, X., & Yang, K. (2019). Ginger for health care: An overview of systematic reviews. Complementary Therapies in Medicine, 45(2019), 114‒123. https://doi.org/10.1016/j.ctim.2019.06.002

Lopez-Romero, J. C., Gonzalez-Rios, H., Borges, A., & Simoes, M. (2015). Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015;2015:795435. https://doi.org/10.1155/2015/795435

Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In Vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms Food Research International, 44(9), 3057-3064. https://doi.org/10.1016/j.foodres.2011.07.030

Mahboubi, M. (2019). Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clinical Phytoscienc, 5(6), https://doi.org/10.1186/s40816-018-0097-4

Mahdavi, V., Rafiee-dastjerdi, H., Asadi, A., Razmjou, J., & Achachlouei, B. F. (2018). Synthesis of zingiber officinale essential oil-loaded nanofiber and its evaluation on the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Crop Prot., 7(1), 39–49.

Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 9, 1401. https://doi.org/10.3389/fphar.2018.01401

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., & Ronald, P. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol, 13(6), 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

Mao, Q., Xu, X., Cao, S., Gan, R., Corke, H., Trust Beta, T., & Hua-Bin Li, H. (2019). Bioactive compounds and bioactivities of ginger (Zingiber offcinale Roscoe). Foods, 8(6). 185. https://doi.org/10.3390/foods8060185

Martins, P. M. M., Merfa, M. V., Takita, M.A., & De Souza. A. A. (2018). Persistence in phytopathogenic bacteria: do we know enough? Frontiers in Microbiology, 9, 1099. https://doi.org/10.3389/fmicb.2018.01099

Masniari P. (2011). The effect of red ginger (Zingiber officinale Roscoe) extracts on the growth of mastitis-causing bacterial isolates. African J Microbiol Res., 5(4), 382-389. https://doi.org/10.5897/AJMR10.776

Menossi, M., Ollier, R. P., Casalonguéb, C. A., & Alvarez, V. A. (2021). Essential oil-loaded bio-nanomaterials for sustainable agricultural applications. J Chem Technol Biotechnol, 96(8). https://doi.org/10.1002/JCTB.6705

Mesomo, M. C., Corazza, M. L., Ndiaye, P. M., Santa, O. R. D., Cardozo, L., & Scheer, A. D. P. (2013). Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. The Journal of Supercritical Fluids, 80, 44-49. https://doi.org/10.1016/j.supflu.2013.03.031

Mishra, V., Mishra, R. K., Dikshit, A., & Pandey, A. C. (2014). Interactions of nanoparticles with plants: an emerging perspective in the agriculture Industry. Emerging Technologies and Management of Crop Stress Tolerance, 159-180. https://doi.org/10.1016/B978-0-12-800876-8.00008-4

Mizan, M. F. R., Ashrafudoulla, M., Hossain, M. I., Cho, H. R., & Ha, S. Do. (2020). Effect of essential oils on pathogenic and biofilm-forming Vibrio parahaemolyticus strains. Biofouling, 36(4), 467–478. https://doi.org/10.1080/08927014.2020.1772243

Moghaddam, M., & Mehdizadeh, L. (2017). Chemistry of essential oils and factors influencing their constituents. In Soft Chemistry and Food Fermentation, 379–419. https://doi.org/10.1016/B978-0-12-811412-4.00013-8

Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., & McClements, D. J. (2016). Superior antibacterial activity of nanoemulsion of Thymus diagenesis essential oil against E. coli. Food Chem., 194, 410-415. https://doi.org/10.1016/j.foodchem.2015.07.139

Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Nanoencapsulation of Zataria multiflora L. essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mold disease. Innov. Food Sci. Emerg. Technol., 28, 73–80. https://doi.org/10.1016/j.ifset.2014.12.011

Mostafa, A. A., Al-Askar, A. A., K S., Turki, M., & Essam, N. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361-366. https://doi.org/10.1016/j.sjbs.2017.02.004

Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: Prospects and constraints. Nanotechnol. Sci. Appl., 7(2), 63–71. https://doi.org/10.2147/NSA.S39409

Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154-163. https://doi.org/10.1016/j.plantsci.2010.04.012

Nas, F. S., Ali, M., & Ahmad, A. M. (2018). In vitro antibacterial activity of different extracts of Zingiber officinale against bacterial isolates responsible for food spoilage. SOA Archives of Pharmacy & Pharmacology. 1(1). 4–8

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451

Neamtu, I., Rusu, A.G., Diaconu, A., Nita, L. E. & Chiriac, A.P. (2017). Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery. 24(1). 539–557. https://doi.org/10.1080/10717544.2016.1276232

O’Bryan, C. A., Pendleton, S. J., Crandall, P. G., & Ricke, S. C. (2015). Potential of plant essential oils and their components in animal agriculture – in vitro studies on the antibacterial mode of action. Front Vet Sci, 2, 35. https://doi.org/10.3389/fvets.2015.00035

Oforma, C. C., Udourioh, G. A., & Ojinnaka, C. M. (2020). Characterization of essential oils and fatty acids composition of stored ginger (Zingiber officinale Roscoe). Journal of Applied Sciences and Environmental Management, 23(12), 2231. https://doi.org/10.4314/jasem.v23i12.22

Popovic, T., Milicevic, Z., Oro, V., Kostic, I., Radovic, V., Jelusic, A., & Krnjajic, S. (2018). A preliminary study of antibacterial activity of thirty essential oils against several important plant pathogenic bacteria. Pesticidi i Fitomedicina, 33(3–4), 185–195. https://doi.org/10.2298/pif1804185p

Parthasarathi, T. (2011). Phytotoxicity of Nanoparticles in Agricultural Crops. International Conference on Green technology and environmental Conservation (GTEC-2011), Chennai, India. (pp. 51-60), https://doi.org/10.1109/GTEC.2011.6167641

Pavoni, L., Benelli, G., Maggi, F., & Bonacucina, G. (2019). Green nanoemulsion interventions for biopesticide formulations. In Nano-Biopesticides Today and Future Perspectives; Academic Press: Cambridge, MA, USA. 133–160. https://doi.org/10.1016/B978-0-12-815829-6.00005-X

Pires, V. P., Almeida, R. N., Wagner, V. M., Lucas, A. M., Vargas, R. M. F., & Cassel, E. (2019). Extraction process of the achyrocline satureioides (Lam) DC. essential oil by steam distillation: Modeling, aromatic potential, and fractionation. J. Essent. Oil Res., 31(4), 286–296. https://doi.org/10.1080/10412905.2019.1569564

Rahmani, A. H., Al shabrmi, F. M., & Aly, S. M. (2014). Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int. J. Physiol. Pathophysiol. Pharmacol, 6(2), 125–136.

Rajni, S., & Asha, K. (2014). Plant growth promoting traits of diazotrophic bacteria effects on growth and yield of rice crops. International Journal for Research in Applied Science and Engineering Technology, 2(5), 76-81 .

Raveau, R., Fontaine, J., & Sahraoui, A. L. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods 9(3), 365, https://doi.org/10.3390/foods9030365

Saad, N. Y., Muller, C. D., & Lobstein, A. (2013). Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal, 28(5), 269–279. https://doi.org/10.1002/ffj.3165

Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J., 2014:925494. https://doi.org/10.1155/2014/925494

Safari, J., & Zarnegar, Z. (2014). Advanced drug delivery systems: Nanotechnology of health design a review. J. Saudi Chem. Soc., 18(2), 85–99. https://doi.org/10.1016/j.jscs.2012.12.009

Seow, Y. X., Yeo, C. R., Chung, H. L., & Yuk, H.-G. (2014). Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr., 54(5), 625–644. https://doi.org/10.1080/10408398.2011.599504

Shaaban, H. A. (2020). Essential oil as antimicrobial agents: efficacy, stability, and safety issues for food application. essential oils - bioactive compounds, new perspectives, and applications. IntechOpen, http://dx.doi.org/10.5772/intechopen.92305

Shakeri, A., Khakdan, F., Soheili, V., Sahebkar, A., Rassam, G., & Asili, J. (2014). Chemical composition, antibacterial activity, and cytotoxicity of essential oil from Nepeta ucrainica L. spp. kopetdaghensis. Ind. Crop. Prod, 58, 315–321. https://doi.org/10.1016/j.indcrop.2014.04.009

Sharifi-rad, M., Varoni, E. M, Salehi, B., Sharifi-rad, J., Mathews, K. R., Ayatollahi, S. A., Kobarfard, F., Ibrahim, S. A., Mayer, D., Zakaria, Z. A., Sharifi-rad, M., Yousaf, Z., Iriti, M., Basile, A., & Rigano, D. (2017). Plants of the genus zingiber as a source of bioactive phytochemicals. Molecules, 22(12), 2145–65. https://doi.org/10.3390/molecules22122145

Sharma, A., Garg, T., Aman, A., Panchal, K., Sharma, R., Sahil Kumar, S., & Markandeywar, T. (2014) Nanogel—an advanced drug delivery tool: Current and future. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 165-77. https://doi.org/10.3109/21691401.2014.930745

Shetta, A., Kegere, J. & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological. Macromolecules, 126, 731–742. https://doi.org/10.1016/j.ijbiomac.2018.12.161

Silva, F. T. da., Cunha, K. F. da., Fonseca, L. M., Antunes, M. D., Halal, S. L. M., El, Fiorentini, Â. M., Zavareze, E. da R., & Dias, A. R. G. (2018). Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 118, 107–115. https://doi.org/10.1016/j.ijbiomac.2018.06.079

Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414. https://doi.org/10.3390/molecules21101414

Soni, K. S., Desale, S. S., & Bronich, T. K. (2016). Nanogels: An overview of properties, biomedical applications, and obstacles to clinical translation. Journal of Controlled Release, 240, 109-126. https://doi.org/10.1016/j.jconrel.2015.11.009

Souza, J. E. T., Siqueira, L. M., Lucas, A. M., Silva, C. G. F. D., Cassel, E., & Vargas, R. M. F. (2020). Comparison of different extraction techniques of Zingiber officinale Essential Oil. Brazilian Archives of Biology and Technology, 63, https://doi.org/10.1590/1678-4324-2020190213

Svarc-Gaji, J., Cvetanovic, A., Segura-Carretero, A., Borrás Linares, I., & Maskovi, P. (2017). Characterization of ginger extracts obtained by subcritical water. The Journal of Supercritical Fluids, 123, 92–100. https://doi.org/10.1016/j.supflu.2016.12.019

Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine. ECAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462

Syed, B., Prasad, M. N. N., Kumar, K. M., & Satish, S. (2018). Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis. Sci Total Environ 637–638, 274–281. https://doi.org/10.1016/j.scitotenv.2018.04.405

Szczepanski, S., & Lipski, A. (2013). Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control, 36(1), 224–229. https://doi.org/10.1016/j.foodcont.2013.08.023

Teerarak, M. & Laosinwattana, C. (2019). Essential oil from ginger as a novel agent in delaying senescence of cut fronds of the fern (Davallia solida (G. Forst.) Sw.). Postharvest Biol. Tec., 156, 110927. https://doi.org/10.1016/j.postharvbio.2019.06.001

Tiwari, S., Singh, S., Tripathi, P., & Dubey, C. (2015). A review—nanogel drug delivery System. Asia J Res Pharm Sci. 5(4). 253–5. https://doi.org/10.5958/2231-5659.2015.00037.5

Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: A review. Comprehensive Reviews in Food Science and Food Safety, 12(1), 40-53. https://doi.org/10.1111/1541-4337.12006

Uthumpa, C., Indranupakorn, R., & Asasutjarit, R. (2013). Development of Nanoemulsion Formulations of Ginger Extract. Advanced Materials Research, 684, 12–15. https://doi.org/10.4028/www.scientific.net/AMR.684.12

Vahedikia, N., Garavand, F., Tajeddin, B., Cacciotti, I., Jafari, S. M., & Omidi, T. (2019). Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural, and antimicrobial attributes. Colloids and Surfaces B: Biointerfaces, 177, 25-32. https://doi.org/10.1016/j.colsurfb.2019.01.045

Viswanathan, B., Meeran, I. S., Subramani, A., Sruthi, Ali, J., & Shabeer, T. K. (2018). Historic review on modern herbal nanogel formulation and delivery methods. International Journal of Pharmacy and Pharmaceutical Sciences, 10(10), 1-10. https://doi.org/10.22159/ijpps.2018v10i10.23071

Wang, H., Liu, J., Wu, X., Tong, Z., & Deng, Z. (2013). Tailor-Made Au@Ag Core-Shell Nanoparticle 2D Arrays on Protein-Coated Graphene Oxide with Assembly Enhanced Antibacterial Activity. Nanotechnology, 24(20), 205102. https://doi.org/10.1088/0957-4484/24/20/205102

Wang, L., Wu, H., Qin, G., & Meng, X. (2014). Chitosan disrupts Penicillium expansum and controls the postharvest blue mold of jujube fruit. Food Control, 41, 56-62. https://doi.org/10.1016/j.foodcont.2013.12.028

Wang, S., Kurepa, J., & Smalle, J. A. (2011). Ultra‐small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant, cell & environment, 34(5), 811-20. https://doi.org/10.1111/j.1365-3040.2011.02284.x

Wang, X., Shen, Y., Thakur, K., Han, J., Zhang, J., & Hu, F. (2020). Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules, 25(17), 3955. https://doi.org/10.3390/molecules25173955

Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2), 578-585. https://doi.org/10.1016/j.carbpol.2012.08.117

Wu, H, Q., & Wang, C. C. (2016). Biodegradable smart nanogels: a new platform for targeting drug delivery and biomedical diagnostics. Langmuir, 32, 6211–6225. https://doi.org/10.1021/acs.langmuir.6b00842

Xu, C., Lei, C., & Yu, C. (2019). Mesoporous silica nanoparticles for protein protection and delivery. Frontiers in Chemistry, 7, 290. https://doi.org/10.3389/fchem.2019.00290

Yadav, J., Poonam Jasrotia, P., Prem Lal Kashyap, P. L., Bhardwaj, A. K., Kumar, S., Singh, M., & Singh, G. P. (2022). Nanopesticides: Current status and scope for their application in agriculture. Plant Protection Science, 58(1), 1–17 https://doi.org/10.17221/102/2020-PPS

Zhang, H., Zhai, Y., Wang, J., & Zhai, G. (2016). New progress and prospects: The application of nanogel in drug delivery. Materials Science and Engineering: C, 60, 560-568. https://doi.org/10.1016/j.msec.2015.11.041

Zhang, L. L., Zhang, L. F., Hu, Q. P., Hao, D. L., & Xu, J. G. (2017). Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control, 80, 290-296. https://doi.org/10.1016/j.foodcont.2017.05.016

Published

2025-04-01

How to Cite

Gunasena, M. T., Bin Ahmad, K., B Hussein, M. Z., Ali, A., Syazwan Afif, M. Z., & bin Abdul Wahab, M. A. (2025). Antibacterial activity of ginger essential oil derived nanobactericide against the growth of phytopathogenic bacteria - A Review. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands, 14(1). https://doi.org/10.36706/jlso.14.1.2025.750

Issue

Section

Articles