Conservation strategy based on soil erodibility with several land covers and slopes in the upstream of Air Bengkulu Watershed

Authors

  • Vinni Lovita Department of Soil Science, Faculty of Agriculture, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Jl. Ringroad Utara No. 104, Daerah Istimewa Yogyakarta 55283, Indonesia
  • Bambang Sulistyo Department of Soil Science, Faculty of Agriculture, University of Bengkulu, Jl. WR. Supratman, Bengkulu 38371, Indonesia

DOI:

https://doi.org/10.36706/jlso.14.1.2025.731

Keywords:

conservation strategy, erodibility, land cover, slope, watershed

Abstract

Global land cover changes driven by increasing demand for agricultural, residential, and industrial land have caused various environmental issues, including soil erosion. The study aimed to analyze soil erodibility values upstream of the Air Bengkulu watershed based on land cover and slope factors. The analysis was conducted using soil samples obtained through purposive sampling based on soil map units, topography, and land cover. Soil erodibility values were determined through laboratory analysis of organic matter, texture, structure, and soil permeability, followed by calculating erodibility. After obtaining the distribution of erodibility values, the next step involves identifying erodibility values based on slope and land cover to analyze the interaction between slope and land cover on erodibility values. Conservation recommendations are provided based on slope, land cover and consideration of community aspects to reduce erodibility values and minimize erosion risk. Results indicate that soil erodibility in the Air Bengkulu watershed ranges from very low to very high, with most areas classified as low. The findings suggest that soil erodibility values vary depending on land cover and slope. Higher erodibility values were observed in areas with minimal land cover, especially in mining and cultivated land with poor management practices. In contrast, dense vegetation such as forests and well-maintained plantations significantly reduced soil erodibility values. The interaction between slope and land cover plays a crucial role in determining soil susceptibility to erosion risk. Vegetative and mechanical conservation strategies are suggested to mitigate erosion risks, improve land productivity, and support ecosystem sustainability in the region.

References

Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7(3), 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004

Anna, A. J., Satria, B., Insusanty, E., & Prastyaningsih, S. R. (2024). Potential for fruit plant-based agroforestry development in Tandun District, Rokan Hulu Regency. Wahana Forestra: Jurnal Kehutanan, 19(1), 1–13. https://doi.org/10.31849/forestra.v19i1.13324

Atangana, A., Khasa, D., Chang, S., Degrande, A. (2014). Tropical Agroforestry.

Babiarz, C., Hoffmann, S., Wieben, A., Hurley, J., Andren, A., Shafer, M., & Armstrong, D. (2012). Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior. Environmental Pollution, 161, 299–310. https://doi.org/10.1016/j.envpol.2011.09.026

Barchia, M. F., Sulistyo, B., Hindarto, K. S., & Suhartoyo, H. (2020). Assessment of air bengkulu (Indonesia) watershed based on agroecosystem landscape quality and sustainable land use plan. Biodiversitas, 21(11), 5422–5430. https://doi.org/10.13057/biodiv/d211150

Cen, L., Peng, X., & Dai, Q. (2024). Response of the stability of soil aggregates and erodibility to land use patterns in wetland ecosystems of Karst Plateau. Forests, 15(4). https://doi.org/10.3390/f15040599

Chen, S., Zhang, G., Zhu, P., Wang, C., & Wan, Y. (2023). Impact of land use type on soil erodibility in a small watershed of rolling hill northeast China. Soil and Tillage Research, 227 (November 2022), 105597. https://doi.org/10.1016/j.still.2022.105597

Chibuzor, K. (2013). Constant head determination of the K- K - value of umudike aquifer medium granular soil. International Journal of Research in Engineering & Advanced Technology, 1(4), 1–6.

Feng, Q., Zhao, W., Wang, J., Zhang, X., Zhao, M., Zhong, L., Liu, Y., & Fang, X. (2016). Effects of different land-use types on soil erosion under natural rainfall in the Loess Plateau, China. Pedosphere, 26(2), 243–256. https://doi.org/10.1016/S1002-0160(15)60039-X

Gil, E., Kijowska-Strugała, M., & Demczuk, P. (2021). Soil erosion dynamics on a cultivated slope in the Western Polish Carpathians based on over 30 years of plot studies. Catena, 207(August). https://doi.org/10.1016/j.catena.2021.105682

Guo, P., Lei, G., Luo, L., Gong, X., Wang, Y., Li, B., Hu, X., & Hu, H. (2022). Soil creep effect on time-dependent deformation of deep braced excavation. Advances in Materials Science and Engineering, 2022. https://doi.org/10.1155/2022/5655592

Jin, F., Yang, W., Fu, J., & Li, Z. (2021). Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Science of the Total Environment, 773, 145514. https://doi.org/10.1016/j.scitotenv.2021.145514

Ketema, H., & Yimer, F. (2014). Soil property variation under agroforestry based conservation tillage and maize based conventional tillage in Southern Ethiopia. Soil and Tillage Research, 141, 25–31. https://doi.org/10.1016/j.still.2014.03.011

Kusumastuti, A., Fatahillah, F., Wijaya, A., & Sukmawan, Y. (2018). Effect of tillage system and 29th year N residue on several chemical properties of soil with leguminous indicator plants. Agriprima : Journal of Applied Agricultural Sciences, 2(1), 18–26. https://doi.org/10.25047/agriprima.v2i1.84

Lal, R. (2014). Soil conservation and ecosystem services. International Soil and Water Conservation Research, 2(3), 36–47. https://doi.org/10.1016/S2095-6339(15)30021-6

Lech-hab, K. B. H., Issa, L. K., Raissouni, A., El Arrim, A., Tribak, A. A., & Moussadek, R. (2015). Effects of vegetation cover and land use changes on soil erosion in Kalaya Watershed (North Western Morocco). International Journal of Geosciences, 06(12), 1353–1366. https://doi.org/10.4236/ijg.2015.612107

Li, J., Wu, L., Chen, L., Zhang, J., Shi, Z., Ling, H., Cheng, C., Wu, H., Butler, A. D., Zhang, Q., Arslan, Z., Pierce, E. M., Su, Y., & Han, F. X. (2024). Effects of slopes, rainfall intensity and grass cover on runoff loss of mercury from floodplain soil in Oak Ridge TN: A laboratory pilot study. Geoderma, 441(December 2023). https://doi.org/10.1016/j.geoderma.2023.116750

Li, W., Migliavacca, M., Forkel, M., Walther, S., Reichstein, M., & Orth, R. (2021). Revisiting global vegetation controls using multi-layer soil moisture. Geophysical Research Letters, 48(11). https://doi.org/10.1029/2021GL092856

Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94–117. https://doi.org/10.1016/j.earscirev.2016.10.004

Liu, Y., Liu, G., Gu, J., Shi, H., Li, H., Han, Y., Liu, D., Xia, X., & Guo, Z. (2025). Soil erodibility and hillslope erosion processes affected by vegetation restoration duration. Soil and Tillage Research, 245(26). https://doi.org/10.1016/j.still.2024.106305

Maulana, A. F., Utomo, S., Lestari, P., Arifriana, R., Dewi, N. A. C., Nugroho, A., Prasetyo, E., Pramono, R. F., Saputro, W. C., & Sulistyowati, D. (2021). Potential of Kaliandra (Calliandra calothyrsus) and Gamal (Gliricidia sp.) in the Special Region of Yogyakarta for the development of wood pellets. Agrifor, 20(1), 71. https://doi.org/10.31293/agrifor.v20i1.4924

Maximus, J. K. (2025). Assessing watershed vulnerability to erosion and sedimentation: Integrating DEM and LULC data in Guyana’s diverse landscapes. HydroResearch, 8, 178–193. https://doi.org/10.1016/j.hydres.2024.11.002

Mohamadi, M. A., & Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research, 3(4), 273–281. https://doi.org/10.1016/j.iswcr.2015.10.001

Mu, W., Yu, F., Li, C., Xie, Y., Tian, J., Liu, J., & Zhao, N. (2015). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7(6), 2990–3008. https://doi.org/10.3390/w7062990

Naharuddin, N. (2018). Conservation farming system of agroforestry pattern and its relationship with erosion level in Wuno Sub DAS Area, Palu River Basin, Central Sulawesi. Jurnal Wilayah Dan Lingkungan, 6(3), 183. https://doi.org/10.14710/jwl.6.3.183-192

Noywuli, N. (2023). Conservation approach in hilly land management for agricultural business. Pertanian Unggul, 2(1), 16–27.

Pahlevi, R. S., Hasan, H., & Devy, S. D. (2018). Study of soil erodibility level at PIT 3000 Block 3, PT. Bharinto Ekatama West Kutai Regency, East Kalimantan Province. Jurnal Teknologi Mineral FT UNMUL, 6(1), 17–20.

Peng, J., Wang, J., Yang, Q., Long, L., Li, H., Guo, Z., & Cai, C. (2024). Spatial variation in soil aggregate stability and erodibility at different slope positions in four hilly regions of northeast China. Catena, 235(November 2023), 107660. https://doi.org/10.1016/j.catena.2023.107660

Perkasa, G. P., Hartati, R. M., & Yuniasih, B. (2023). Effect of shade on the growth of various types of LCC (Legume Cover Crop). Agroforetech, 1(1), 216–222.

Pitaloka, D. (2020). Dry land and planting patterns to maintain natural sustainability. Jurnal Teknologi Terapan: G-Tech, 2(1), 119–126. https://doi.org/10.33379/gtech.v2i1.329

Qiu, D., Xu, R., Wu, C., Mu, X., Zhao, G., & Gao, P. (2023). Effects of vegetation restoration on soil infiltrability and preferential flow in hilly gully areas of the Loess Plateau, China. Catena, 221(PA), 106770. https://doi.org/10.1016/j.catena.2022.106770

Rajagukguk, C. P., Febryano, I. G., & Herwanti, S. (2018). The change of plant species composition and plant pattern on management of Damar agroforestry. Jurnal Sylva Lestari, 6(3), 18. https://doi.org/10.23960/jsl3618-27

Rinaldi, R., & Basri, H. (2012). Erosion hazard and conservation efforts for cattle grazing fields in Aceh Besar. Jurnal Manajemen Sumberdaya Lahan, 1(2), 136–146.

Rizki, S R., Hilmanto, R., & Herwanti, S. (2016). Analysis of income and welfare of agroforestry farmers in Sumber Agung Village, Kemiling District, Bandar Lampung. Jurnal Sylva Lestari, 4(2), 17. https://doi.org/10.23960/jsl2417-26

Sayfulloh, A., Riniarti, M., & Santoso, T. (2020). Invasive foreign plant species in the Upper Sukaraja Resort, South Bukit Barisan National Park. Jurnal Sylva Lestari, 8(1), 109–120.

Senanayake, S., Pradhan, B., Huete, A., & Brennan, J. (2020). A review on assessing and mapping soil erosion hazard using geo-informatics technology for farming system management. Remote Sensing, 12(24), 1–25. https://doi.org/10.3390/rs12244063

Sri, U. W., Komala Widiastuti, L., Wati, N. E., Abidin, Z., Juliani, R., Rahayu, A. D., Santoso, S., & Ankhoviyya, N. (2023). Training on the utilization of Indigofera zollingeriana plants as conservation plant and alternative animal feed. Journal of Human and Education, 3(3), 223.

Suherman, D., & Herdiawan, I. (2015). Legume plant Desmodium rensonii tree as quality animal feed plant. Pastura, 4(2), 100–104.

Sulistyo, B., Barchia, M. F., Hindarto, K. S., & Listyaningrum, N. (2020). The effect of land unit elimination on the conservation activity plan at Air Bengkulu Watershed, Bengkulu Province. Indonesian Journal of Geography, 52, 170–180.

Torralba, M., Fagerholm, N., Burgess, P. J., Moreno, G., & Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems and Environment, 230, 150–161. https://doi.org/10.1016/j.agee.2016.06.002

Tunas, I. G. (2005). Prediction of land erosion in Bengkulu Watershed with Geographic Information System (GIS). Jurnal SMARTek, 3(3), 137–145.

Wang, B., Zheng, F., Römkens, M. J. M., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1–10. https://doi.org/10.1016/j.geomorph.2013.01.018

Wang, H., Zhang, G. hui, Li, N. ning, Zhang, B. jun, & Yang, H. yue. (2019). Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena, 174(November 2018), 24–35. https://doi.org/10.1016/j.catena.2018.11.003

Wang, Y., An, X., Zheng, F., Wang, X., Wang, B., Zhang, J., Xu, X., Yang, W., & Feng, Z. (2024). Effects of soil erosion–deposition on corn yields in the Chinese Mollisol region. Catena, 240(26), 108001. https://doi.org/10.1016/j.catena.2024.108001

Wang, Y., Hu, X., Yu, S., Wang, Z., Zhao, J., Fang, N., Xiao, H., Wang, L., & Shi, Z. (2024). Soil conservation of sloping farmland in China: History, present, and future. Earth-Science Reviews, 249(December 2023), 104655. https://doi.org/10.1016/j.earscirev.2023.104655

Wu, Q., Liang, H., Xiong, K., & Li, R. (2019). Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: frontier theories and outlook. Agroforestry Systems, 93(5), 1927–1938. https://doi.org/10.1007/s10457-018-0301-z

Xin, Y., Liu, G., Xie, Y., Gao, Y., Liu, B., & Shen, B. (2019). Effects of soil conservation practices on soil losses from slope farmland in northeastern China using runoff plot data. Catena, 174(19), 417–424. https://doi.org/10.1016/j.catena.2018.11.029

Zhang, B., Fang, H., Wu, S., Li, C., Wang, Y., & Siddique, K. H. M. (2024). Soil erosion prediction and spatiotemporal heterogeneity in driving effects of precipitation and vegetation on the northern slope of Tianshan Mountain. Journal of Cleaner Production, 459(May), 142561. https://doi.org/10.1016/j.jclepro.2024.142561

Zhang, B., He, C., Burnham, M., & Zhang, L. (2016). Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Science of the Total Environment, 539, 436–449. https://doi.org/10.1016/j.scitotenv.2015.08.132

Zhang, Y., & Dai, M. (2022). Analysis of the cooling and humidification effect of multi-layered vegetation communities in Urban Parks and its impact. Atmosphere, 13(12), 1–13. https://doi.org/10.3390/atmos13122045

Zhou, J., Fu, B., Gao, G., Lü, Y., Liu, Y., Lü, N., & Wang, S. (2016). Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena, 137, 1–11. https://doi.org/10.1016/j.catena.2015.08.015

Ministry of Forestry Regulation. (2009). Regulation of the Minister of Forestry of the Republic of Indonesia Number: P.32/MENHUT-II/2009 (2009). Indonesia.

Tropenbos. (2023). Scaling Agroforestry in Indonesia. 2. Scaling Agroforestry in Indonesia.

United States Department of Agriculture. (1972). Guide for interpreting engineering uses of soils. Accessed 10 December 2024.

Erfandi, D. (2016). Soil conservation aspects in preventing land degradation on sloping agricultural lands. Prosiding Seminar Nasional Pengembangan Teknologi Pertanian, September, 128–140.

Ishak, J. (2016). Konservasi Tanah Mendukung Pertanian Organik untuk Peningkatan Produktivitas Lahan. Prosiding Seminar Nasional , 5(70530), 60–67.

Lovita, V., Sulistyo, B., & Listyowati, E. A. (2022). Site selection for the development of organic farming for conservation purposes in the upstream of Air Bengkulu watershed, Bengkulu. IOP Conference Series: Earth and Environmental Science, 1005(1). https://doi.org/10.1088/1755-1315/1005/1/012003

Supriyono, Citra, F. W., Sulistyo, B., & Barchia, M. F. (2017). Landuse change estimation for soil erosion detection in the catchment area of the Bengkulu River Basin using landsat imagery. Prosiding Seminar Nasional Pendidikan Geografi FKIP UMP 2017, 110–122.

Published

2025-04-01

How to Cite

Lovita, V., & Sulistyo, B. (2025). Conservation strategy based on soil erodibility with several land covers and slopes in the upstream of Air Bengkulu Watershed. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands, 14(1). https://doi.org/10.36706/jlso.14.1.2025.731

Issue

Section

Articles