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ABSTRACT
 

 

Peatlands (according to the Governmental Regulation nr 71/2014) can be utilized for agriculture 

and plantation if the peat depths are less than 3 m or more than 3 m, peatlands have to be conserved or 

restored. Determining peat depths can be conducted in the fields by intensive surveys which were so 

expensive, inefficient, and ineffective, therefore it was essential to find our simple alternative methods 

how to measure peat depths easily. The research aimed to establish a spatially reliable interpolator for 

peat depth variability by utilizing the kriging method. The research was conducted in Seponjen 

Village, Kumpeh, Muaro Jambi, Jambi Indonesia. Primary data were processed by applying ArcGIS 

10.3 software. The interpolated dataset of peat depths validated their actual dataset and performed an 

excellent relationship (indicated by a positive correlation coefficient, r = 0.920) and a coefficient of 

determination (R
2
 = 0.847). It indicated that the interpolated dataset could be utilized to make maps by 

kriging. The very deep peat (Site A) and the deep peat (Site B) showed a tendency for a strong 

autocorrelation of the data distribution of peat depths. Autocorrelation tended to be anisotropic 

towards the river on the shallow peat (Site C). A good interpolator of peat depth variability can be 

generated using the kriging method. 
Keywords: good interpolator, Jambi, kriging analysis, peat depths, spatial variability 

 

INTRODUCTION
 

 

Peatlands deeper than three meters have to be 

preserved, according to government regulations; 

those shallower than three meters could be used 

for general agricultural purposes and industrial 

plantations (Armanto, 2019a). The primary issue 

is that field operating scale maps of the peat 

depth distribution (scales 1:50,000 and 1:10,000) 

were still missing (Armanto et al., 2013). It is 

challenging for peatland users to identify their 

industrial plantations and field-based agriculture 

on the 1:250,000 or the available peat national 

scale maps (Al-Timimi, 2021). 

One of the goals stated in the ASEAN 

Peatland Management Strategy (APMS) is the 

mapping of all the peatlands by generating peat 

maps at the operational level (Abijith & 

Saravanan, 2021). As part of the context of the 

ASEAN Agreement on Transboundary Haze 

Pollution, APMS seeks to assist in managing 

peatlands sustainably and minimizing fires and 

haze (Armanto et al., 2023b). Regretfully, due to 

these constraints, which include a lack of ability 

to track the APMS implementation progress, a 

lack of a consistent national budget, and a 

shortage of personnel, technical know-how, and a 

standardized mapping methodology, the mapping 
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of peatlands is moving slowly, especially for 

smaller areas (Syakina et al., 2024a; 2024b). 

Other things impeding the mapping process are 

diverse definitions of peat and peatlands: One of 

the main difficulties is coming up with a standard 

set of peat classes and definitions. Currently, 

several industrial plantations lack an 

operationally accepted definition of peatlands 

(Armanto et al., 2023a). Lack of awareness: 

Many peatland users, from the government and 

communities, continue to lack information and 

awareness about peatland issues (Wildayana & 

Armanto, 2018d). One of the most important 

things to help maintain peatlands is to develop 

and execute sustainable policies and methods for 

managing peatlands (Wildayana, 2017). Another 

important thing is to educate the community 

about the value of preserving the environment 

(Wildayana & Armanto, 2018a; 2018b). 

Difficult access: It is more challenging to 

perform ground observations in many peatland 

locations due to their inaccessibility (Wildayana 

& Armanto, 2018c). Problems with methodology 

(money and time): The currently popular 

approach for mapping peatlands is a 

measurement done on the ground. Peat mapping 

in the field takes a long time since it is expensive, 

labor-intensive (Wildayana & Armanto, 2017, 

2021), and needs a large amount of peat drilling 

data. For example, creating maps at scales of 

1:50,000 and 1:10,000, respectively, will need 

around 100 and 2500 persons to conduct ground 

surveys over an area of 70,000 ha; the survey is 

expected to take 20 days to complete. Ground-

surveying is estimated to cost between $0.3 and 

$0.5 ha
-1

, or between $21,000 and $35,000 for a 

70,000-ha region. 

One of the easiest and simplest approaches to 

producing maps with a scale of 1:50,000 and 

1:10,000 is to interpolate the available peatland 

map data at a scale of 1:250,000 (national scale 

maps, PMRA, 2022). This interpolation can 

minimize technical difficulties and make 

mapping work more effective and efficient. 

Interpolation is theoretically defined as the 

process of making estimates of datasets on a 

location without sampling using surveyed actual 

datasets from observation points (Armanto, 

2019b). Sampling points (actual dataset) may be 

obtained from field surveys, the available 

peatland map data at a scale of 1:250,000, and 

field measurements by moving sensors. For 

example, in smart agriculture, if we have a 

dataset of information for a certain parameter 

(e.g. peat depths), and want to create a map for 

peat depths over all fields (Guth et al., 2022; 

Bhunia et al., 2018). The dataset unavailability 

may be due to survey complexity, expensive, 

expensive, time-consuming or requiring too 

many sensors (Armanto & Wildayana, 2022; 

2023a). Hence, it is very inefficient and 

ineffective to sample any square centimeter in the 

field, so it is necessary to use the interpolation 

method (Holidi et al., 2019). 

The spatial interpolation technique consists of 

deterministic and kriging methods (Zuhdi et al., 

2019). The deterministic approach does not 

encapsulate the spatial structure in the data 

structure, carried out by applying mathematical 

equations to estimated values at non-sampled 

points and conducted by collecting surface and 

trend analysis techniques (Varone et al., 2021). 

The kriging method can align the spatial model 

with the actual dataset so that predicted values 

can be obtained at not sampled locations (Lázaro-

Lobo et al., 2023) and offer users an accurate 

estimated dataset (El Falah et al., 2021; Armanto 

et al., 2022). The interpolation technique depends 

on the fact that there are spatial correlations in 

the datasets. Tobler's law (1970) states that 

anything in this world is related to each other, but 

adjacent points are more related than distant 

points (Imanudin et al., 2019). Kriging is the 

most frequently used for interpolation techniques 

(Negassa et al., 2019). Kriging is generally an 

approach used to perform spatial interpolation. 

The kriging technique is based on spatial 

models between actual observation points 

(analyzed by the variogram) to estimate the 

values of points at not surveyed locations (Hu et 

al., 2021; He et al., 2023). The kriging method 

focuses on the distance between actual 

observation points, describing the spatial 

structure in the dataset by comparing observation 

points separated by spatial distance (Zhang, 

2023). The goal is to understand the relationship 

between actual observation points separated by 

different distances (Jamali et al., 2021). The 

kriging technique retains the dataset values of the 

actual observation points on the interpolation 
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map (Zhu et al., 2021). The objective of this 

research was to establish a spatially reliable 

interpolator for peat depth variability by utilizing 

the kriging method. 

 

MATERIALS AND METHODS 

 

Research Locations 

Peatlands in the Muaro Jambi District, 

Indonesia (Kumpeh Sub District, Seponjen 

Village) served as the research site. The 

Batanghari River-Air Hitam Laut River largest 

Peat Hydrological Unit (PHU), which includes 

the peatlands, was shown in Figure 1. The 

research area was East of Orang Kayo Hitam 

Forest Park and Berbak National Park, both of 

which were conservation areas (PMRA, 2022). 

 

Field Survey, Procedures, Tools and Materials 

In this study, we used a GPS (Global 

Positioning System), compass, ruler, peat drill, 

peat probe, label, permanent pen, plastic bag, and 

stationery. Purposively, three research sites, each 

covering around 30 ha, were identified: Site A, 

which had a peat depth of 8.10–15.00 m; Site B, 

which covers 3.10–8.00 m; and Site C, which 

covers 0.00–3.00 m. Boring on the chosen 

transect lines allowed for field observations 

(Table 1). By inserting metal sticks that could be 

stretched by one meter apiece into the ground 

until they hit the mineral soil layer, peat depths 

were recorded in the field using a technique 

known as manual probing or manual coring. The 

GPS was then used to record the depths of the 

sticks as well as their geographic position. 

 

Gathering Information and Analysing It 

Using ArcGIS 10.3 and the Geostatistics 

extension program, the gathered data was 

processed. The goal of the data analysis was to 

produce interpolation and map-based displays of 

part of the data. Quantile-quantile plots, Voronoi 

maps, and histogram images were used to 

monitor and analyze data normality. To have data 

distribution and estimation based on measured 

sampling point data and model statistics, data 

interpolation was computed using geostatistical 

methods. By building many variogram models, 

model statistics could show automatic 

relationships between sample data. To find the 

best variogram model for peat depth, the chosen 

model will be put to the test. Kriging was used to 

represent the geostatistical interpolations as peat 

depth maps. The use of kriging in this research 

(no other programs) was because kriging could 

perform interpolation and extrapolation, apart 

from that, kriging was technically easier and 

more effective when combined with a GIS 

program. Stages of interpolation and spatial 

variability analysis were stated in Figure 2. The 

ability to spatial interpolate and extrapolate was 

the novelty of this research, therefore the use of 

kriging was very relevant to display interpolated 

and extrapolated datasets. 

 

 
Figure 1. Research site and grid sample arrangement 
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Table 1. Typical field data descriptions 

Filed Descriptions Site A Site B Site C 

Row Totals (unit) 5‒6 5‒6 6‒7 

Column Totals (unit) 7‒8 7‒8 7‒8 

Site Area (ha) 30 30 30 

Thickness of Peat Very deep deep shallow 

Depths of Peat (m) 8.10‒15.00 3.10‒8.00 0.00‒3.00 

Distance Among Boring (m) 85‒90 85‒90 85‒90 

Distance Among Column (m) 95‒110 95‒110 95‒110 

Note:  Borings were placed from Northwest to Southeast. Field Survey Results in 2023 

 

 
Figure 2. Spatial variability analysis and interpolation steps 

 

RESULTS
 

 

Optimal Interpolator Validation by kriging 

The kriging validity testing of the estimated 

dataset using a variogram illustrated that each 

interpolated point on the prediction grid was 

obtained from the actual measured points. Thus, 

for each actual dataset, the standard deviation of 

the dataset could be calculated. It was concluded 

that based on a limited actual dataset, the kriging 

could display the estimated dataset at points that 

were not surveyed. Dataset estimation did not 

rule out the actual field dataset and was followed 

by a minimum standard deviation. Hence, the 

kriging could be mentioned to be an optimal 

interpolator because the kriging was developed 

based on the regionalization theory and was 

stated as the best linear estimator. Kriging maps 

could be used to display peat depth distribution 

maps. 

Figure 3 compares the scatter plot between the 

actual dataset and the estimated dataset. The 

estimated dataset could be cross-validated with 

the actual dataset. The validation concluded that 

the actual dataset and the estimated dataset had 

almost the same fluctuations with high reliability 

(demonstrated by the determination coefficient, 

R
2
 = 0.846, and a strong correlation coefficient, r 

= 0.93). This indicates that about 84.62% of the 

estimated dataset was obtained from the actual 

dataset, and the rest 15.40% was determined by 

other factors. Based on the estimated dataset, 

maps could be made. The kriging could not 

interpolate the dataset globally if the amount of 

the actual dataset was minimal. It could be only 

used for the regional estimated dataset and it was 

not helpful if no dataset was available at all.  This 

means if we only have a limited number of peat 

depth datasets, then based on that dataset we 

could make spatial interpolation and 

extrapolation to produce peat depth maps with 

high validation. The peat depth maps were very 

important in determining which peat areas could 

be cultivated and which areas had to be 

conserved. It supports the Governmental 

Regulation No. 71/2014 states that if the peat 

depth was less than 3 m, then peatlands may be 

used for agriculture and plantations; if the peat 

depth was greater than 3 m, then peatlands must 

be maintained or restored. 
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 Kriging Interpolation 

The estimated dataset could be mapped in 

Figure 4. At Site A (very deep peat, 8.10-15.00 

m) there were several areas with peat depths of 

only 3.50-5.50 m deep, and about 10 m of peat 

depths were also found at Site B (deep peat, 3.10-

8.00 m). Site C (shallow peat) displayed the most 

diverse peat depths, where about 25% of the Site 

C was mineral soil with peat depths of less than 

0.50 cm, the true peatlands if the peat depth was 

more than 0.50 cm. At Site C, the interpolated 

map showed an increasing trend with improving 

distance to the Southeast because, in the 

Northwest, the Kumpeh River was found, which 

forms deep peat hydrology. The direction 

variation of the peats aligned with the position 

perpendicular to the Kumpeh River and the peat 

depths illustrated an anisotropic pattern aligned 

with the distance from the river. 

 

 

 
Figure 3. Estimated dataset was validated with the actual dataset (log-transformed data, n = 160) 

 

 
Figure 4. Kriging interpolation map for peat depths 
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Map of Standard Deviation 

A map of the standard deviation of the actual 

peat depths was presented in Figure 5. The 

magnitude of the standard deviation depended on 

the distance of the sampling points. The closer 

the sampling points were taken, the smaller the 

standard deviation was calculated. If the 

sampling points were far from each other, thus 

the standard deviation would be greater. 

The standard deviation of Site A was smaller 

when compared to Site B and Site C. There was a 

tendency to conclude that the thinner the peat 

layer, the greater their standard deviation. The 

reason was as followed; even though the tools, 

personnel, and sampling methods were not 

different, there would be differences in standard 

deviation due to differences in layer roughness 

between mineral soils and peatlands. 

Long-term pressure from the peat mass above 

was the reason why the topography of the bottom 

layer of peat at Sites A and B tends to be 

smoother (more even). Because Site C was close 

to the surface and the peat mass was under less 

strain, the terrain beneath the peat tends to be 

rocky. This also explains why the contours of the 

peat depth (Figure 4) in Sites C and B appeared 

heavier and more irregular than in Site A (Figure 

5). 

 

 
Figure 5. Map of the standard deviation of the actual peat depths 

 

 

 

 

 

 



 Armanto et al.: Using the Kriging method to establish a spatially reliable  7 

DISCUSSION
 

 

Map Benefits of Estimated Peat Depths 

The main dynamic factors damaging peatlands 

include drainage, land clearing, illegal logging, 

and fires. Mapping peatlands is challenging since 

field measurement data is limited. This is 

relevant with other workers (Zuhdi et al., 2019). 

Only with the availability of a base map can an 

approximate map of peat depth be produced; if 

this is not present, then field measurement data is 

also not available and only a few maps of peat 

depth estimates are produced. The similar finding 

was also performed by Abijith & Saravanan 

(2021). 

Estimated peat depth maps are a great 

resource for the general public as well as industry 

and government. This was stated by other 

workers (Junedi et al. 2017). Maps showing the 

depth of peat are mostly used by the government 

to manage peatlands holistically, such as when 

awarding concession permissions. Governmental 

Regulation No. 71/2014 states that if the peat 

depth is less than 3 m, then peatlands may be 

used for agriculture and plantations; if the peat 

depth is greater than 3 m, then peatlands must be 

maintained or restored. Peatland mapping is 

critical for broad agricultural management, as 

previous studies have explained (Jamali et al., 

2021). 

Maps with predicted peat depths can serve as 

a primary source of information for the industry 

when operating the plantation and forestry 

industries together. Byg et al. (2023) discovered 

in their research that industrial operations on 

peatlands devoid of mapping will result in major 

environmental issues that are hard to manage; 

Junedi et al. (2017) and Armanto (2019c) 

corroborated this claim. Maps showing predicted 

peat depths are helpful for the general population 

as a basic reference to determine which areas can 

be recovered and which ones can be managed. 

Maps should be used to manage any fishing 

activity. 

Maps with estimated peat depths can be used 

to quantify the amount of carbon stored in 

peatlands, reduce carbon emissions into the 

atmosphere, and guarantee that the environmental 

services provided by peatlands operate as best 

they can. The public will have access to maps 

showing anticipated peat depths to increase 

knowledge and comprehension of the entire 

amount of carbon and peat resources. Lázaro-

Lobo & Ervin (2021) gave examples of how to 

use maps to manage environmental aspects. 

 

CONCLUSSION
 

 

Lastly, the following conclusions can be 

summed up based on the evaluation and 

discussion of the study findings the interpolated 

dataset of peat depths validated their actual 

dataset performed an excellent relationship 

(indicated by a positive correlation coefficient, r 

= 0.920) and a coefficient of determination (r
2
 = 

0.847). It indicated that the interpolated dataset 

can be utilized to make maps by kriging. The 

very deep peat (the Site A) and the deep peat (the 

Site B) show a tendency for a strong 

autocorrelation of the data distribution of peat 

depths. Autocorrelation tended to be anisotropic 

towards the river on the shallow peat (the Site C). 

A good interpolator of peat depth variability can 

be generated using the kriging method. 
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