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ABSTRAK 

 

Keragaman spasial lahan gambut bersifat alami, dapat dikelola dan terkait dengan 

variasi alam dan lingkungan. Penelitian ini bertujuan untuk menguraikan keragaman 

spasial gambut dan pemetaan kriging untuk pH dan muka air tanah. Lokasi penelitian ini 

adalah lahan gambut di Desa Seponjen, Kec. Kumpeh, Kab. Muaro Jambi, Jambi. Data 

penelitian dianalisis dengan ArcGIS 10.3 dan Geostatistik. Analisis validasi antara pH 

tanah aktual dan estimasi pH tanah memiliki pola fluktuasi yang sama, dengan reliabilitas 

tinggi (r = 0,94) dan akurasi (R
2
 = 0,89) positif. Ini artinya kinerja interpolasi data pH 

dapat digunakan untuk membuat peta pH tanah. Sebaran pH gambut sangat tebal (area A) 

memiliki autokorelasi kuat dengan kisaran variogram 768 m, pada gambut sedang (area B) 

cenderung anisotropik terhadap sungai dengan keragaman maksimum 273 m. Kedalaman 

muka air tanah di kedua area itu bersifat autokorelatif, yaitu memiliki ketergantungan 

spasial dimana keragaman muka air tanah pada jarak dekat kecil dan meningkat pada jarak 

jauh. 

Kata kunci: interpolator yang bagus, muka air tanah, pH tanah, keragaman tanah 

 

ABSTRACT  
 

Spatial variability of peatlands is mostly related to natural variations and environment. 

Thus, it is natural and manageable. This study aimed to determine deciphering spatial 

variability and kriging mapping for soil pH and groundwater levels. The study was 

conducted on peatlands in Seponjen Village, Kumpeh Sub-District, Muaro Jambi District, 

Jambi. The collected data were analyzed using ArcGIS 10.3 and Geostatistics. The 

validation analysis of soil pH showed good performance where the actual soil pH and the 

estimated results of soil pH had the same fluctuation pattern, with high reliability (r = 0.94) 

and accuracy (R
2
 = 0.89) positive. It means that the interpolation performance of soil pH 

data can be used to create soil pH maps. The soil pH on very thick peat (the area A) 

showed a strong autocorrelation with a variogram range of 768 m, while on medium peat 

(the area B) it showed an anisotropic tendency towards rivers with a maximum variability 
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of 273 m. The depth of the groundwater levels in the two areas is autocorrelative, it has a 

spatial dependence where the variability of the groundwater levels is small at close ranges 

and increases at long distances. 

Keywords: good interpolator, groundwater levels, soil pH, spatial variability 

 

INTRODUCTION 

 

Peatlands have very diverse 

characteristics both spatially and vertically 

(El Falah et al., 2021; Al-Timimi, 2021). 

Their characteristics are closely related to 

their thickness, the mineral soil layer under 

the peat substratum, maturity, and 

enrichment level (from the overflow of the 

surrounding river water and the influence of 

sea water). Peatlands are generally 

categorized as marginal land for agriculture 

development (Zuhdi et al., 2019; Imanudin 

et al., 2019; 2020). The main limiting factor 

is the condition of the root media which is 

not conducive to the development of root 

crops, mainly due to the conditions of water 

saturation, acid, and containing toxic 

organic acids that are harmful to plants 

(Armanto, 2019a; 2019b; 2019c). 

Therefore, reclamation efforts are needed, 

so that land conditions become more 

suitable for plant development (Barchia et 

al., 2021; Zahri et al., 2019). 

Spatial variability of peatlands is mostly 

related to natural variations and 

environment (Abdel Rahman et al., 2020; 

Dwiastuti et al., 2021). Thus, spatial 

variability of peatlands is natural and 

manageable (Maroeto et al., 2021. 

Determinant factors cause an increase of 

soil variability both geologically and 

pedologically, such as climate, plant 

residues, flora, fauna, topography as well as 

management (Imanudin et al., 2021a; 

2021b; 2021c). Spatial variability analysis 

is a very useful tool for assessing peatland 

productivity and for the environment 

(Bhunia et al., 2018; Negassa et al., 2019). 

Geostatistics belongs to a method that is 

well known accepted to manage the spatial 

soil variability and is able to interpolate the 

relationship between reconstructions and 

variogram analysis. Kriging interpolation 

technique helps show regional character 

distributions with isoline (Kriging) maps 

(Sayer, 2020). For peatlands this 

information is still very much needed. This 

is because the use of soil characteristics can 

be used as the basis for making peatlands 

restoration policies, such as the 

paludiculture model (Varone et al., 2021; 

Wildayana & Armanto, 2021). Traditional 

soil sampling methods based on soil type 

are possible and do not adequately represent 

a very large area of peatlands. Therefore, it 

is necessary to propose a systematic soil 

sampling method, namely the grid sampling 

method. Collected data taken from the grid 

sampling method are able to be mapped or 

utilized to predict locations that were not 

sampled using spatial interpolation 

(Dietrich & MacKenzie, 2018). This study 

aimed to determine deciphering spatial 

variability and Kriging mapping for soil pH 

and groundwater levels. This resarch has 

been carried out in year of 2021 located in 

the peatlands, which are part of the 

Batanghari River-Air Hitam Laut KHG 

(Peat Hydrological Area) which is the most 

extensive KHG in Jambi. 

 

MATERIALS AND METHODS 

 

The Study Sites 

This study was conducted on peatlands 

in Seponjen Village, Kumpeh Sub-District, 

Muaro Jambi District, Jambi Province 

Indonesia (Figure 1). Geographically, the 

study location was located between 

103
o
58’20”–103

o
58’51” east and 1

o
27’35”–

1
o
30’00” south. The peatlands are adjacent 

to two conservation areas, namely the 

Orang Kayo Hitam Grand Forest Park and 

the Berbak National Park. 

 

Survey Design, Method, Materials and 

Tools 

This research used some tools and 

materials, namely peat drill, peat probe, 
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GPS (Global Positioning System), compass, 

ruler of 20 m, plastic bag, label, permanent 

marker, tally sheet and stationery. Two grid 

sampling areas were designed with an area 

of around 25 ha each, i.e. the area A 

(having peat depths of around 8-15 m); and 

the area B (showing peat depths of around 

3-8 m). On the sampling area, some 

transects were made in forms of row and 

column. This boring path was made in a 

direction more or less perpendicular to the 

river. The distance between the lines was 

100 m. Observation of boring distance in 

each lane 80 m. The peat thickness was 

observed and measured directly during the 

main survey in the field, namely by boring 

at the planned point location. Sampling was 

carried out on transects with boring 

direction of Northwest to Southeast. The 

layout of the data collection locations was 

presented in Table 1 and Figure 1. 

 

Data Collection and Analyses 

The field survey was done in each 

sampling point. The collected data were 

analyzed using ArcGIS 10.3 software with 

the extension of Geostatistical Analyst. The 

data analysis aimed to perform data 

interpolation, which was to estimate the 

amount of data on the entire surface of the 

study area on the basis of the distribution of 

available data. Data normality was proved 

by histogram, QQ Plot (Quantile-Quantile 

Plot) and Voronoi Map.  

Geostatistical interpolation was done to 

perform an estimate of the value of the data 

distribution across the surface based on the 

collected sample point data and based on a 

statistical model that calculates auto-

correlation between samples by making 

some variogram models for peat depths. 

Some selected variogram models were 

made in order to find out optimal variogram 

models for peat depths. The geostatistical 

interpolation were to make mapping to 

obtain maps of levels of the peat depths by 

Kriging method and its geostatistical 

parameters.  

 

 

 
                                               A (very thick peats)                B (thick peats) 

Figure 1. Geographic location of study locations and layout of measurement area 

 

 

 

 

 

Research Sites 

Sites Scale 1:100.000 
 

peat area with thickness >8-15m 

peat area with thickness >3-8m 

peat area with thickness <3m 

Peat drilling site 

survey transect VLF 

Street 

river/drainage canal 
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Table 1. General description of sampling area 

 

 

RESULTS AND DISCUSSION 

 

The results and discussion of this study 

emphasized the discussion of general 

description of sampling area; variogram 

models for soil pH values and for 

groundwater levels; optimal interpolator by 

Kriging for soil pH; Kriging interpolation 

for soil pH values and for ground water 

levels; and correlation between peat depths 

with soil pH and ground water levels. 

 

Variogram Models for Soil pH Values 

The variogram representing the 

distribution pattern of soil pH in each area 

could be seen in Figure 2. Based on the 

distribution of red dots in Figure 2, it could 

be concluded that the very deep peat area 

(the area A) has a more auto-correlative pH 

distribution or has more spatial dependence. 

This means that the distance between 

locations greatly determines the difference 

in pH values, the closer the distance, the 

more likely the pH value will be the same. 

The further away the greater the possibility 

of differences in soil pH. In contrast to the 

area A, in the area B, the distance does not 

really affect the difference in soil pH. At 

close range the pH can be very different, 

conversely at a long distance the pH can be 

almost the same.  Thus, it can be concluded 

that the distribution of soil pH in the area A 

has a higher spatial autocorrelation and 

tends to follow Tobler's Law of Geography. 

The model chosen to represent the 

variogram of the distribution of soil pH in 

each study area was the Stable model 

(RMSE, Root Mean Square Error = 0.077) 

for the area A, Hole effect (RMSE = 0.15) 

for the area B. For the chosen variogram, it 

was taken for the lowest RMSE. The 

parameters of the selected variogram model 

in both areas are presented in Table 2.  

Nugget effect values that are low or 

close to zero in both study areas indicate 

that the mean prediction error of the 

selected model was very small and indicates 

that the prediction results using the model 

are very good. The range value indicates the 

maximum distance where autocorrelation 

still occurs, i.e. the range where the 

difference in measurement results was still 

influenced by the measurement distance. 

The area A shows a range value of 

approximately 768 m, meaning that the 

distribution of soil pH in very thick peat 

areas has a spatial dependence of up to a 

distance of 768 m. Where the diversity of 

pH values tends to be small at close 

distances and more varied at longer 

distances. However, at distances greater 

than 768 m, the soil pH was random. The 

range value in the measurement than in the 

area B is closer, which was 273 m. 

Therefore, the pH distribution in the area B 

appears to be more varied. 
 

 

  

General Characters Area A Area B 

Acreage (ha) 25 25 

Direction of Bboring Northwest-Southeast Northwest-Southeast 

Peat Depths (m) 8-15 3-8 

Peat Thickness  Very Thick Medium 

Row (row) 5 5 

Column (column) 7 7 

Boring Distance (m) 80 80 

Column Distance (m) 100 100 

Boring Amount (boring) 35 36 
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Area A Area B 

Figure 2.  Variogram model for soil pH values 

 
Table 2. Parameters for the best selected variogram model 

Parameter Area A Area B 

For Soil pH Distributions 

Model Type Stable Hole Effect 

Nugget Effect (%) 0.0000 0.0177 

Range (m) 768.44 273.41 

Sill (%) 0.0155 0.0070 

For Groundwater Levels 

Model Type Spherical J-Bessel 

Nugget Effect (%) 80.96 2.50 

Range (m) 176.40 361.00 

Sill (%) 58.83 293.89 

  

  
Area A Area B 

Figure 3. Variogram model for groundwater levels 
 

Variogram Models for Groundwater 

Levels 

Figure 3 presented the distribution of 

variogram points in the area A and the area 

B which are superimposed with the best 

variogram model. Based on Figure 3, it can 

be concluded that the depth of the 

groundwater levels in the two areas was 

autocorrelative, that was, it has a spatial 

dependence where the variability of the 

groundwater levels was small at close 

ranges and increases at long distances. 

Area A shows a range value of around 

176 m, meaning that the distribution of 

groundwater levels in the area A has a 

spatial dependence of up to a distance of 

176 m. Where the diversity of pH values 

tends to be small at close distances and 

more varied at longer distances. However, 

at distances greater than 176 m, the 

groundwater levels are random. The range 

value in the measurement than in the area B 

was larger, which was 360 m. For distances 

greater than 360 m, the groundwater levels 

did not follow the model (random). In other 

words, the distribution of groundwater 

depths followed the pattern of Tobler's law 

of geography. The best model that describes 

the variogram of the groundwater tables in 

the area A was the spherical model, while 

Stable Hole Effect 

Spherical J-Bessel 
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the area B was the J-Bessel model which 

produces RMSE of 12.01 and 9.33, 

respectively. 

 

Optimal Interpolator by Kriging for Soil 

pH 

In fact, soil pH data on large areas of 

peatland are often incomplete or not 

measured due to the large area of peatlands, 

and the limited ability of measuring 

instruments or the presence of outliers 

(values) that differ greatly from the 

majority of the data we have. One way was 

to interpolate the available data. 

Interpolation was the process of "guessing" 

the data by taking into account other 

available data. Interpolation was a 

technique to find the value of a missing 

variable in a known data range. 

To test the data interpolation can use the 

correlation coefficient or determinant 

coefficient. There are three interpretations 

of correlation analysis, including: looking 

at the strength of the relationship between 

two variables; looking at the significance of 

the relationship; and looking at the 

direction of the relationship. The 

relationship between actual soil pH and 

estimated soil pH of R = 0.945 means that 

the relationship between the actual pH 

variable and the estimated pH was very 

strong, positive and significant. The 

correlation coefficient was positive 

(unidirectional), then the relationship 

between the two variables was 

unidirectional, meaning that if the soil pH 

actual was high, then the pH estimated 

variable was also high. The termination 

coefficient (R
2
) was the proportion of 

variability in a data that was calculated 

based on a statistical model. R
2
 was the 

ratio of the variability of the estimated soil 

pH values made by the model to the 

variability of the actual soil pH data values, 

so that R
2
 can be used as a measurement of 

how well the regression line approaches the 

original data values created by the model.  

In the case of soil pH, it turns out that R
2
 = 

0.89 means that 89% of the variation from 

the estimated pH can be explained by the 

actual pH variable; while the remaining 

0.11 was influenced by unknown variables 

or inherent variability or 89% of the 

estimated pH was determined by the actual 

pH, while the remaining 11% was 

influenced by other factors. 

Kriging interpolation using variogram 

model. The Kriging method was able to 

provide data at unrecorded points, unbiased 

soil sample parameter estimates with a 

minimum standard deviation, so the 

Kriging method was an optimal 

interpolator. Maps created with Kriging are 

able to visually display the distribution of 

data. Kriging was based on the theory of 

regionalized variables and was considered 

the best linear unbiased estimator. 

Statistical analysis for the results of cross-

validation using soil pH data showed good 

performance where the results of soil pH 

measurements and soil pH estimation 

results had almost the same fluctuation 

pattern (Figure 4). The performance of the 

estimated soil pH data (interpolation) was 

good and this interpolation can be used to 

create soil pH data. 

 

Kriging Interpolation for Soil pH Values 

The results of the interpolation of soil 

pH data from each area were mapped 

geostatistical based on the variogram model 

with the smallest RMSE. Figure 5 showed 

how the pH distribution pattern of the peat 

soil is, it turns out that very thick peat areas 

(the area A) tend to have lower soil pH 

values (more acidic than medium peat areas 

or the area B), although the difference was 

small (< 1 pH unit). The lower pH in very 

thick peat areas was thought to be due to 

the greater mass of peats in this area, 

resulting in more production of organic 

acids such as humic acid, fulvic acid and 

others which are contributors to the low pH 

of peat soils in general. While the variation 

in pH in medium peat soils was 

understandable because medium peat areas 

are not completely peat soils. The presence 

of mineral soil, which was part of the area 

B, was thought to contribute to this 

variability. 
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Kriging Interpolation for Ground Water 

Levels 

The results of geostatistical interpolation 

of groundwater depth data in the two peat 

areas produce a prediction map for the 

distribution of the groundwater table depth 

as showed in Figure 6. There was a 

difference in the depth of the groundwater 

table between very thick peat areas (left) 

and medium peat areas (right), where in 

very thick peat areas tend to have a greater 

depth of water table. While the spatial 

variability between the two does not seem 

much different. 

 

Correlation Between Peat Depths with 

Soil Ph And Ground Water Levels 

The relationship between the pixel values 

of the predicted peat thickness map with the 

predicted pH and groundwater depth was 

traced using correlation statistics in image 

processing software. The results in the form 

of coefficients are presented in Table 3. 

 

 
Figure 4. Cross validation for actual soil pH and estimated soil pH (log transformed data, n = 140) 

 

 

 

 

 
Figure 5. Kriging interpolation of soil pH values 

Scale 1:10.000 

 

sample 

location 

Street 
drainage 

channel 

Soil pH Values 
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Figure 6. Kriging interpolation of ground water levels 

 
Table 3. Correlation coefficient of peat depths with soil pH and groundwater levels 

Area/Variable Peat Depths (m) pH Values Groundwater Levels (cm) 

Area A 

Peat Depths -- -0,78*/ -0,75*/ 

pH Values -0,78*/ -- 0,05 

Groundwater Levels -0,75*/ 0,05 -- 

Area B 

Peat Depths -- -0,62* -0,75*/ 

pH Values -0,62*/ -- 0,04 

Groundwater Levels -0,75*/ 0,04 -- 

Note: */ significantly different at the level of 5%. 

 

Peat thickness, soil pH and groundwater 

table depth are generally significantly 

negatively correlated with each other at the 

5% test level in the two study areas. This 

was very reasonable because the pH value 

of the soil was not constant and was 

influenced by organic acids under the 

ground water. The more soil water, the 

more organic acids released by the system, 

so that the soil pH decreases. Therefore, the 

relationship between the two shows a real 

relationship.

 

sample location 

Street 

drainage channel 

contour 

 

Scale 1:10.000 

 

groundwater level (cm from the surface) 
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CONCLUSSION 

 

Based on the results and discussion of 

this study, it can be concluded validation 

analysis of soil pH data showed good 

performance where the actual soil pH and 

the estimated results of soil pH had the 

same fluctuation pattern, with high 

reliability (r = 0.94) and accuracy (R
2
 = 

0.89) positive. This means that the 

interpolation performance of soil pH data 

can be used to create soil pH maps. The 

distribution of soil pH on very thick peat 

(the area A) showed a strong 

autocorrelation with a variogram range of 

768 m, while on medium peat (the area B) 

it showed an anisotropic tendency towards 

rivers with a maximum variability of 273 

m. The variogram model for the area A is 

stable and the hole effect is for medium 

peat (the area B). The depth of the 

groundwater levels in the two areas is 

autocorrelative, that is, it has a spatial 

dependence where the variability of the 

groundwater levels is small at close ranges 

and increases at long distances. 
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